

Universidad Nacional Autónoma de México Facultad de Contaduría y Administración Sistema Universidad Abierta y Educación a Distancia

Licenciatura en Contaduría

Estadística II

COLABORADORES

DIRECTOR DE LA FCA

Dr. Juan Alberto Adam Siade

SECRETARIO GENERAL

L.C. y E.F. Leonel Sebastián Chavarría

COORDINACIÓN GENERAL

Mtra. Gabriela Montero Montiel Jefe de la División SUAyED-FCA-UNAM

COORDINACIÓN ACADÉMICA

Mtro. Francisco Hernández Mendoza FCA-UNAM

AUTORES

Mtra. Adriana Rodríguez Domínguez Lic. Manuel García Minjares

DISEÑO INSTRUCCIONAL

Laura Antonia Fernández Lapray

CORRECCIÓN DE ESTILO

Mtro. José Alfredo Escobar Mellado

DISEÑO DE PORTADAS

L.CG. Ricardo Alberto Báez Caballero Mtra. Marlene Olga Ramírez Chavero L.DP. Ethel Alejandra Butrón Gutiérrez

DISEÑO EDITORIAL

Mtra. Marlene Olga Ramírez Chavero

Contenido

Datos de identificación	6				
Sugerencias de apoyo	7				
Instrucciones para trabajar en el cuaderno de actividades	8				
Objetivo general de la asignatura y temario oficial					
Unidad 1. Introducción al muestreo	11				
Objetivo particular	12				
Actividad diagnóstica	13				
Actividades de aprendizaje	14				
Actividad integradora	18				
Cuestionario de reforzamientos	19				
Examen parcial de la unidad (autoevaluación)	20				
Respuestas	23				
Unidad 2. Distribuciones muestrales	24				
Objetivo particular	25				
Actividad diagnóstica	26				
Actividades de aprendizaje	27				
Actividad integradora	31				
Cuestionario de reforzamientos	32				
Examen parcial de la unidad (de autoevaluación)	33				
Respuestas	35				
Unidad 3. Estimación de parámetros	36				
Objetivo particular	37				
Actividad diagnóstica	38				
Actividades de aprendizaje	40				
Actividad integradora	43				
Cuestionario de reforzamientos	44				
Examen parcial de la unidad (de autoevaluación)	45				
Respuestas	47				

Unidad 4. Pruebas de hipótesis	48
Objetivo particular	49
Actividad diagnóstica	50
Actividades de aprendizaje	51
Actividad integradora	54
Cuestionario de reforzamientos	55
Examen parcial de la unidad (de autoevaluación)	56
Respuestas	59
Unidad 5. Pruebas de hipótesis con la distribución ji cuadrada	60
Objetivo particular	61
Actividad diagnóstica	62
Actividades de aprendizaje	63
Actividad integradora	65
Cuestionario de reforzamientos	66
Examen parcial de la unidad (de autoevaluación)	67
Respuestas	70
Unidad 6. Análisis de regresión lineal simple	71
Objetivo particular	72
Actividad diagnóstica	73
Actividades de aprendizaje	74
Actividad integradora	76
Cuestionario de reforzamientos	77
Examen parcial de la unidad (de autoevaluación)	78
Respuestas	81
Unidad 7. Análisis de series de tiempo	82
Objetivo particular	83
Actividad diagnóstica	84
Actividades de aprendizaje	86
Actividad integradora	88
Cuestionario de reforzamientos	89
Examen parcial de la unidad (de autoevaluación)	90
Respuestas	93

Unidad 8. Pruebas de estadísticas no paramétricas	94
Objetivo particular	95
Actividad diagnóstica	96
Actividades de aprendizaje	97
Actividad integradora	99
Cuestionario de reforzamientos	100
Examen parcial de la unidad (de autoevaluación)	101
Respuestas	103

DATOS DE IDENTIFICACIÓN

Estadística II	Clave: 1353					
Plan: 2012	Créditos: 8					
Licenciatura: Contaduría	Semestre: 3º					
Área o campo de conocimiento: Matemáticas	Horas por semana: 4					
Duración del programa: semestral	Requisitos: ninguno					
Tipo: Teórica Teoría: 4 Práctica: 0						
Carácter: Obligatoria (x) Optativa ()						
Seriación: Sí (X) No () Obligatoria ()	Indicativa (X)					
Asignatura con seriación antecedente: Estadística I						
Asignatura con seriación subsecuente: Ninguna						

SUGERENCIAS DE APOYO

- Trata de compartir tus experiencias y comentarios sobre la asignatura con tus compañeros, a fin de formar grupos de estudio presenciales o a distancia (comunidades virtuales de aprendizaje, a través de foros de discusión y correo electrónico, etcétera), y puedan apoyarse entre sí.
- Programa un horario propicio para estudiar, en el que te encuentres menos cansado, ello facilitará tu aprendizaje.
- Dispón de periodos extensos para al estudio, con tiempos breves de descanso por lo menos entre cada hora si lo consideras necesario.
- Busca espacios adecuados donde puedas concentrarte y aprovechar al máximo el tiempo de estudio.

Instrucciones para trabajar con el cuaderno de actividades

El programa de la asignatura consta de 8 unidades. Por cada unidad encontrarás una serie de actividades, el número de las mismas varía de acuerdo a la extensión de la unidad.

Notarás que casi todas las unidades comienzan con la elaboración de un mapa conceptual o mental, esto es con el fin de que tu primera actividad sea esquematizar el contenido total de la unidad para que tengan una mejor comprensión, y dominio total de los temas.

Te recomendamos que leas detenidamente cada actividad a fin de que te quede claro que es lo que tienes que realizar. Si al momento de hacerlo algo no queda claro, no dudes en solicitar el apoyo de tu asesor quien te indicará la mejor forma de realizar tu actividad en asesorías semipresenciales o por correo electrónico para los alumnos de la modalidad abierta, o bien para la modalidad a distancia a través de los medios proporcionados por la plataforma.

Te sugerimos (salvo la mejor opinión de tu asesor), seguir el orden de las unidades y actividades, pues ambas están organizadas para que tu aprendizaje sea gradual. En el caso de los alumnos de la modalidad a distancia, la entrega de actividades está sujeta al plan de trabajo establecido por cada asesor y el trabajo es directamente en plataforma educativa:

http://fcaenlinea1.unam.mx/licenciaturas/

La forma en que deberás responder a cada actividad dependerá de la instrucción dada (número de cuartillas, formatos, si hay que esquematizar etcétera).

Una vez que hayas concluido las actividades entrégalas a tu asesor si así él te lo solicita. Los alumnos de la modalidad a distancia, deberán realizar la actividad directamente en la plataforma educativa de acuerdo a la instrucción dada.

Te invitamos a que trabajes estas actividades con el mayor entusiasmo, pues fueron elaboradas considerando apoyarte en tu aprendizaje de la asignatura de Conceptos Jurídicos Fundamentales.

Indicaciones:

Notarás que tanto los cuestionarios de reforzamiento como las actividades de aprendizaje, contienen instrucciones tales como "adjuntar archivo", "trabajo en foro", "texto en línea", "trabajo en wiki o en Blog", indicaciones que aplican específicamente para los estudiantes del SUAYED de la modalidad a distancia. Los alumnos de la modalidad abierta, trabajarán las actividades de acuerdo a lo establecido por el asesor de la asignatura en su plan de trabajo, incluyendo lo que sé y lo que aprendí.

Biblioteca Digital:

Para tener acceso a otros materiales como libros electrónicos, es necesario que te des de alta a la Biblioteca Digital de la UNAM (BIDI).

Puedes hacerlo desde la página principal de la FCA http://www.fca.unam.mx/
Alumnos, >Biblioteca >Biblioteca digital >Clave para acceso remoto >Solicita tu cuenta. Elige la opción de "Alumno" y llena los campos solicitados. Desde este sitio, también puedes tener acceso a los libros electrónicos.

OBJETIVO GENERAL

Al finalizar el curso, el alumno será capaz de inferir las características de una población con base en la información contenida, así como de contrastar diversas pruebas para la toma de decisiones.

TEMARIO OFICIAL

(horas 64)

		Horas	
1. Introducción al muestreo		4	
2. Distribuciones muestrales		8	
3. Estimación de parámetros		10	
4. Pruebas de hipótesis		10	
5. Pruebas de hipótesis con la distribución ji cuadrada		8	
6. Análisis de regresión lineal simple		10	
7. Análisis de series de tiempo		8	
8. Pruebas estadísticas no paramétricas		6	
	Total	64	

UNIDAD 1

Introducción al muestreo

OBJETIVO PARTICULAR

Al terminar la unidad, el alumno reconocerá los diferentes tipos de muestreo y sus características.

TEMARIO DETALLADO

(4 horas)

1. Introducción al muestreo

- 1.1. Parámetros estadísticos y estimadores
- 1.2. Estimación de parámetros y pruebas de hipótesis
- 1.3. Muestreo aleatorio y muestreo de juicio
- 1.4. Muestras únicas y muestras múltiples
- 1.5. Muestras independientes y muestras relacionadas
- 1.6. Tipos de muestreo aleatorio

ACTIVIDAD DIAGNÓSTICA LO QUE SÉ

Sean los siguientes conjuntos:

U = {Los números enteros del 1 al 100}

A = {Los números enteros pares del 1 al 100}

B = {Los números primos del 1 al 100}

Con la información anterior, responde:

- 1. ¿Cuál de los tres conjuntos contiene toda la información?
- 2. ¿Qué conjuntos están contenidos en el anterior?
- 3. Define un conjunto C conformado con 10 elementos del conjunto A.
- 4. Define un conjunto D conformado con 10 elementos del conjunto B.
- 5. ¿Qué criterios se consideraron para seleccionar los elementos de los conjuntos C y D?

ACTIVIDADES DE APRENDIZAJE

Unidad 1, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet <u>MindManager</u>.

 Unidad 1, actividad 1. Adjuntar archivo. La siguiente tabla muestra el número de horas que 200 estudiantes de la Facultad de Contaduría y Administración dedican a estudiar al día después de clases.

	Horas de								
Alumno	estudio								
1	2	41	2	81	3	121	3	161	3
2	0	42	1	82	0	122	4	162	2
3	3	43	3	83	3	123	2	163	3
4	0	44	0	84	2	124	3	164	1
5	2	45	0	85	4	125	0	165	1
6	3	46	1	86	3	126	4	166	3
7	3	47	2	87	3	127	3	167	1
8	2	48	3	88	4	128	3	168	3
9	2	49	3	89	4	129	3	169	2
10	0	50	1	90	1	130	2	170	2
11	0	51	0	91	2	131	2	171	1
12	2	52	0	92	1	132	0	172	2
13	2	53	3	93	1	133	4	173	2
14	0	54	2	94	0	134	2	174	3
15	2	55	3	95	3	135	3	175	1
16	0	56	0	96	1	136	4	176	3
17	3	57	3	97	0	137	1	177	3
18	1	58	2	98	2	138	0	178	3
19	1	59	2	99	2	139	3	179	1
20	0	60	2	100	2	140	3	180	1

21	2	61	1	101	2	141	3	181	2
22	0	62	1	102	2	142	1	182	1
23	2	63	0	103	0	143	0	183	2
24	1	64	3	104	3	144	4	184	3
25	0	65	1	105	1	145	3	185	3
26	1	66	2	106	1	146	3	186	2
27	1	67	4	107	1	147	2	187	3
28	3	68	2	108	3	148	2	188	3
29	3	69	2	109	0	149	0	189	2
30	1	70	4	110	0	150	0	190	3
31	1	71	2	111	2	151	1	191	3
32	2	72	0	112	0	152	2	192	2
33	0	73	0	113	1	153	2	193	1
34	4	74	2	114	3	154	1	194	2
35	0	75	4	115	2	155	2	195	3
36	1	76	4	116	3	156	2	196	2
37	1	77	4	117	1	157	2	197	3
38	0	78	3	118	3	158	2	198	3
39	2	79	3	119	2	159	3	199	2
40	3	80	4	120	1	160	1	200	3

- 1. Se desea conocer el promedio de horas que estos estudiantes dedican a estudiar sus materias después de clases, por lo que se solicita lo siguiente:
 - a. Determinar un tamaño de muestra que permita estimar el promedio de horas dedicadas a estudiar al día después de clase, y que garantice un error máximo de estimación de 0.8 h, con un nivel de confianza del 95%.
 - b. Obtener la muestra a través de un muestreo aleatorio simple.
 - c. Calcular el promedio con la muestra obtenida y compararla con el promedio real.
 - d. Interpretar el resultado.
- 2. Se desea conocer la proporción de estudiantes que dedican tres o más horas de estudio después de clases, por lo que se solicita lo siguiente:

- a. Determinar un tamaño de muestra que permita estimar la proporción de estudiantes que estudian tres horas o más, con un nivel de confianza del 90% y un error de cinco puntos porcentuales.
- b. Obtener la muestra a través de un muestreo sistemático.
- c. Calcular la proporción de estudiantes con tres horas o más de estudio después de clase con la muestra obtenida, y compararla con la proporción real.
- d. Interpretar el resultado.
- 3. Uno de los responsables del estudio considera que no es necesario realizar un muestreo aleatorio, por lo que se solicita lo siguiente:
 - a. Proponer un tamaño de una muestra aplicando un tipo de muestreo de juicio.
 - b. Seleccionar una muestra aplicando dicho muestreo de juicio.
 - c. Calcular alguna de las siguientes medidas: el promedio de horas de estudio dedicadas después de clases o la proporción de estudiantes con tres o más horas de estudio después de clase con la muestra obtenida, y comparar con los resultados reales y con los obtenidos de la muestra aleatoria simple o sistemática.
 - d. Interpretar los resultados.
- 2. Unidad 1, actividad 2. Adjuntar archivo. Se realizará una investigación a fin de estudiar el efecto del estado civil y sexo de los dueños de microempresas en la aplicación efectiva del método administrativo dentro de sus negocios. La población de interés se distribuye de la siguiente manera:

Estado civil	Mujeres	Hombres	Total
Soltero	8,222	8,280	16,502
Casado	2,481	2,882	5,363
Unión libre	575	662	1,237
Divorciado	277	191	468

Viudo	21	8	29	
Total	11,576	12,023	23,599	

Se realizará un muestreo para recabar la información.

- 1. Determina qué parámetro(s) se estimará(n).
- 2. Propón un tipo de muestreo para aplicar en esta población.
- 3. Propón un tamaño de muestra que garantice resultados con un nivel de confianza de 90%.
- 4. Explica cómo estaría conformada la muestra.

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Adjuntar archivo.

Se desea realizar un estudio del aprovechamiento de los alumnos que cursan en el semestre actual la materia de Estadística Inferencial en la Facultad de Contaduría y Administración de la UNAM en la modalidad escolarizada, Abierta y a Distancia. Los resultados se mostrarán a la Dirección de la entidad. Propón un diseño de muestra que garantice resultados confiables para llevar a cabo una toma de decisiones adecuada.

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿Cuál es el objetivo de la estadística inferencial?
- 2. ¿Qué es el muestreo?
- 3. ¿Qué es una población?
- 4. ¿Qué es una muestra?
- 5. ¿Qué se desea estimar con un muestreo?
- 6. ¿Qué significa tener una muestra representativa?
- 7. ¿Cómo se divide el muestreo?
- 8. ¿Cuáles son los tipos del muestreo probabilístico?
- 9. ¿Cuál es la diferencia entre el muestreo estratificado y uno por conglomerados?
- 10. ¿Qué información se requiere para calcular el tamaño de muestra para estimar una media poblacional empleando un muestreo aleatorio simple?
- 11. ¿Qué información se requiere para calcular el tamaño de muestra para estimar una proporción poblacional empleando un muestreo aleatorio simple?

EXAMEN PARCIAL

(de autoevaluación)

I. Elige la respuesta correcta a las siguientes preguntas.

1.	Subconjunto	de la	a población	analizado	para	obtener	un	resultado	referente	8
	una població	n.								

a) Muestreo	O b) Muestra
O c) Parámetro	O d) Estimador

2. Lista de inscritos en un ciclo escolar, directorio de números telefónicos, listado del INEGI de los habitantes del estado de Puebla, son ejemplos de:

O a) Muestra	O b) Muestra representativa
O c) Subconjunto	O d) Marco muestral

3. Medida que describe el comportamiento de una variable poblacional.

O a) Muestra	O b) Parámetro
O c) Estimador	O d) Censo

4. Muestreo que considera la aleatoriedad y emplea métodos estadísticos; los resultados se extrapolan a una población.

a) Muestreo no probabilístico	O b) Muestreo de bola de nieve
O c) Muestreo aleatorio	O d) Muestreo de juicio

5. Tipos de muestreo no probabilístico.

a) Cuota, juicio y bola de nieve	O b) Cuota, juicio, conglomerado y aleatorio simple				
O c) Aleatorio simple, sistemático, estratificado y conglomerado	O d) Bola de nieve, juicio, cuota y estratificado				

6. Tipo de muestreo no probabilístico utilizado cuando es difícil obtener la información de un evento.

O a) Bola de nieve	O b) Conglomerado
O c) Por cuota	O d) Por juicio

7. Tipo de muestreo probabilístico donde las unidades de la población son seleccionadas cada número determinado.

O a) Sistemático	O b) Aleatorio simple
O c) Estratificado	O d) Conglomerado

8. Es la diferencia entre el valor del estimador muestral y el valor del parámetro poblacional.

a) Error de no muestreo	O b) Desviación estándar				
O c) Error de muestreo	O d) Rango				

9. La fórmula $n=\frac{{\it Z}^2 pq}{e^2}$ se emplea para calcular el tamaño de la muestra para:

O a)	una proporción cuando se conoce el tamaño de la población	b) un promedio cuando se conoce el tamaño de la población					
O c)	una proporción cuando se desconoce el tamaño de la población	O d) un promedio cuando se desconoce el tamaño de la población					

10. Pasos para extraer una muestra en Excel.

O a)	Datos,	análisis	de	datos,	O b)	Análisis	de	datos,	muestra,
	muestra,	rango	de e	entrada,		método d	de m	nuestred	o, número
	método d	de muest	reo,	número		de muest	tras		
	de muestr	as							
O c)	Análisis	de date	os, m	nuestra,	O d)	Muestra,	méto	odo de i	muestreo,
	número d	e muestra	S			número d	e mı	uestras	

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado encontrarás las respuestas al examen por unidad.

Unidad 1
I. Solución
1. b
2. d
3. b
4. c
5. a
6. a
7. a
8. c
9. c
10. a

UNIDAD 2

Distribuciones muestrales

OBJETIVO PARTICULAR

Al terminar la unidad, el alumno identificará e interpretará los diferentes tipos de distribuciones muestrales.

TEMARIO DETALLADO

(8 horas)

2. Distribuciones muestrales

- 2.1. La distribución muestral de la media
- 2.2. El teorema central del límite
- 2.3. La distribución muestral de la proporción
- 2.4. La distribución muestral de la varianza

ACTIVIDAD DIAGNÓSTICA LO QUE SÉ

Relaciona las siguientes columnas:

1.	Distribución de probabilidad.	() Valor numérico del resultado de un experimento.
2.	Función de probabilidad.	() Toma cualquier valor finito de valores.
3.	Valor esperado.	() Distribución de las probabilidades que puede tomar una variable aleatoria.
4.	Variable aleatoria.	() Indicador del valor central de una variable aleatoria.
5.	Variable aleatoria continua.	() Toma cualquier valor en un intervalo.
6.	Variable aleatoria discreta.	() Proporciona la probabilidad de que <i>x</i> tome un valor.

ACTIVIDADES DE APRENDIZAJE

Unidad 2, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet <u>MindManager</u>.

 Unidad 2, actividad 1. Adjuntar archivo. A continuación se muestra el rendimiento de los préstamos realizados por una casa de empeño durante el último ejercicio fiscal.

0.7587	0.7469	1.0433	1.1737	1.3871	2.0036	2.5015	2.9757	3.2247	3.2602	3.8174	4.6947
0.9852	1.4041	1.7891	2.3101	2.5252	2.9895	2.9102	3.8501	4.1898	4.2917	4.4616	4.9598
0.4423	0.7552	1.3054	1.9420	2.1469	2.9021	3.2905	3.9702	4.4449	4.5204	5.2001	5.5562
1.4513	2.2894	3.1889	4.8242	5.9383	6.8070	9.5462	11.3042	13.9513	15.4129	16.8336	21.3716
3.5789	5.9200	6.7369	8.1853	9.0358	10.1137	11.7053	12.8842	14.1642	16.4295	19.6632	20.5979
1.2778	1.8364	2.4789	3.3447	4.7273	6.5079	7.3598	8.2885	9.0776	9.6362	10.4043	11.3051
1.9322	3.8394	4.8557	5.5897	6.3300	6.7566	7.6600	8.6888	12.3965	18.7265	24.0903	27.2020
3.1860	5.4646	7.3042	8.9268	9.8836	11.2300	12.4877	14.7958	16.8327	17.7254	19.0126	20.6599
2.2236	3.6910	4.7701	5.9350	6.9732	8.4447	10.2841	11.3836	12.6548	14.0200	15.1931	16.1700
3.5502	5.0385	6.4635	7.4170	8.8245	10.0313	11.3648	13.0502	14.4365	16.4350	17.9339	20.0204
4.8753	7.2997	9.5072	11.4215	13.2391	15.4847	18.7095	21.1691	22.5147	24.3704	26.5281	29.8467
3.2218	5.7572	8.0195	10.4556	12.1263	13.6932	15.6958	18.0800	20.2768	22.9455	25.3116	28.6846
4.9687	9.0935	13.0779	19.2063	25.9066	31.9719	38.7722	54.3450	62.5840	71.0125	79.6586	98.8438
10.8810	16.8315	22.4864	30.2413	35.8901	41.0359	48.0090	53.7539	58.4859	63.7446	73.3613	80.7782
6.3528	11.9657	16.7513	21.8020	25.8408	30.3951	34.6697	38.4977	42.6234	47.6067	52.6725	59.1566
7.4179	11.8805	16.2159	19.7919	22.6298	25.7010	30.0787	35.7655	41.1877	46.5509	53.3123	63.7494
8.8410	13.6799	18.9637	25.1746	32.1306	40.6121	47.6280	59.3981	68.9604	78.6183	90.6861	105.7487
8.0969	15.8969	23.5562	34.3667	44.4964	54.9497	67.4994	81.1891	93.1258	109.2200	125.8155	159.1681
15.4624	25.0928	31.4986	35.5460	38.1685	40.9872	43.3405	44.6592	45.4862	46.5960	48.5578	51.6574
2.4480	3.8382	4.9639	6.5336	8.0000	9.3116	10.4050	11.4568	12.5228	14.1869	15.7897	19.6974
4.8262	7.1999	9.0897	10.7501	12.6827	15.1645	17.2648	19.2628	20.9629	22.7019	25.9596	29.9296
2.5489	4.3391	5.8271	6.9357	7.9810	9.1141	10.0783	10.8444	11.9486	13.2507	16.0627	18.7946
1.8175	3.0238	4.0723	5.0001	5.6924	6.4077	7.0796	7.7374	8.6746	9.4572	10.3666	11.9381

1.2544	2.0816	2.6765	3.2686	3.8589	4.4415	4.9434	5.5051	6.2865	6.7211	7.1919	8.0092
0.7753	1.2936	1.8144	2.3130	2.8074	3.3218	3.7800	4.2637	5.0053	5.5565	6.1208	7.0515
3.7639	8.1617	14.5380	23.6648	28.8334	32.9223	35.6320	37.8818	40.7339	43.6296	47.1713	51.9661
3.5949	6.0128	8.3466	11.4266	13.4576	15.3051	16.9442	18.4986	20.3932	21.8959	23.7428	27.7048
2.5715	4.2952	5.5931	6.7339	7.7080	8.6637	9.6104	10.5850	11.9623	12.8571	14.1196	15.7185
2.1756	3.9644	5.1823	6.1664	7.0121	8.2769	9.3210	10.3719	12.1620	13.7693	15.7840	18.6091
2.5253	3.9031	4.8684	5.8308	6.4675	7.1670	7.8753	8.4825	9.5307	10.2244	11.2046	12.3187
1.3427	2.2417	2.8085	3.3934	3.7800	4.3947	4.8019	5.3778	6.1476	6.8785	7.7923	8.9593
0.5544	0.4878	1.1245	1.6346	1.8678	2.1088	1.8435	2.4469	3.4005	3.8678	4.2591	4.4035
0.9231	0.8582	1.3741	1.9279	2.1345	2.6325	2.9271	3.3185	3.9399	4.3980	5.2424	5.7005
0.4043	0.6832	1.3187	1.4917	1.1642	1.2478	1.3945	1.6987	2.3041	2.6792	3.5314	3.9765
0.6215	1.2234	1.5664	1.7197	1.4645	1.6272	1.8935	2.5225	3.3702	4.0861	4.9740	5.1908
0.0036	0.3367	0.7890	1.1479	0.8938	0.7970	1.1915	1.3123	1.7183	1.9680	2.7019	3.3327
0.5864	0.7403	0.8667	1.0146	0.5649	0.6518	0.9278	1.4428	2.4669	2.9149	3.4548	4.0533
0.5165	0.7974	1.0156	0.9553	0.4628	0.5834	1.0106	1.4221	2.2096	2.6079	3.3318	3.7590
0.4635	0.7622	1.4925	1.7234	1.6135	2.0340	2.6027	3.1952	3.8984	4.6064	5.7955	6.5281
0.2318	0.4530	1.0309	1.3846	1.0893	1.2754	1.5513	1.7942	2.3049	2.6144	3.1467	3.5735
1.0870	1.6717	2.3935	2.0673	1.4241	1.3924	1.6125	1.8947	2.4289	3.0612	3.8869	4.4016
0.4872	0.8641	1.0576	1.0496	0.3047	0.2997	0.7809	0.9403	1.1880	1.8707	2.9726	3.8188
0.7079	0.9126	0.9705	0.6538	0.3361	0.7986	1.3645	1.6687	2.1168	2.6335	3.3307	3.5683
0.4028	0.8970	1.6374	1.7045	1.3660	1.3045	1.2709	1.5590	1.9413	2.4262	3.3810	3.9740
0.8941	1.1497	1.4268	1.2376	0.9138	1.0887	1.3667	1.7308	2.1801	2.7451	3.5737	4.0813
-0.0905	0.0991	0.5066	0.2464	-0.2542	-0.0870						

Con la información anterior, realiza lo siguiente:

- Calcula el promedio, la varianza, la desviación estándar y la proporción de rendimientos menores o iguales a 1.
- Calcula el tamaño de una muestra que garantice un nivel de confianza del 95% y un error de estimación de 0.55 para identificar el rendimiento promedio.
- 3. Con el tamaño de muestra calculado, calcula la probabilidad de que el promedio muestral sea mayor a 5.5.
- Con el mismo tamaño de muestra, calcula la probabilidad de que la proporción muestral de rendimientos menores o iguales a uno sea inferior a 0.3.
- 5. Calcula la probabilidad de que la variabilidad muestral supere a la poblacional. Apóyate en el mismo tamaño de muestra.

- 6. Selecciona de forma aleatoria los elementos de la muestra.
- 4. Con los valores de la muestra, calcula el promedio, varianza, desviación estándar y proporción de rendimientos menores o iguales a 1.
- 8. Compara los resultados muestrales con los poblacionales, y con base en esto califica la calidad de sus resultados.
- Unidad 2, actividad 2. Adjuntar archivo. A continuación se muestra el número de docentes de posgrado en 96 municipios del país durante el ciclo escolar 2013-2014.

39	81	12	34	16	7	2	19
8	18	368	1,903	17	1	5	5
127	495	1,337	1,064	43	247	3	8
80	697	5	448	1,229	232	8	30
40	135	49	469	10	10	1	58
162	10	16	45	20	142	1,358	14
153	53	56	1,244	9	0	328	23
391	10	39	10	1	6	2	21
8	9	626	45	100	40	19	289
453	22	404	1,864	18	97	42	51
7	17	993	141	3	5	2	3
24	491	3,239	25	4	11	84	7

Fuente: elaboración propia con información de

http://planeacion.sep.gob.mx/principalescifras/, consultada el 14 de julio de 2015.

Con la intención de realizar un estudio sobre las condiciones laborales de los docentes de posgrado en estos municipios, se elegirá una muestra aleatoria de ellos, y en los municipios elegidos se les entrevistará a todos.

Con base en lo anterior, realiza lo siguiente:

- Calcula el promedio, la varianza, la desviación estándar y la proporción de municipios con 300 o más docentes de posgrado.
- Calcula el tamaño de una muestra que garantice un nivel de confianza del 95% y un error de estimación de 0.55 para estimar el promedio de docentes de posgrado.

- 3. Con el tamaño de muestra calculado en el punto anterior, calcula la probabilidad de que el promedio muestral sea mayor a 500.
- 4. Con el mismo tamaño de muestra, calcula la probabilidad de que la proporción muestral de municipios con 300 o más docentes de posgrado sea mayor a 0.2.
- 5. Calcula la probabilidad de que la variabilidad muestral supere a la poblacional (básate en el mismo tamaño de muestra).
- 6. Selecciona de forma aleatoria los elementos de la muestra.
- 7. Con los valores de la muestra, calcula el promedio, varianza, desviación estándar y proporción de municipios con 300 o más docentes de posgrado.
- 8. Compara los resultados muestrales con los poblacionales, y con base en ello califica la calidad de los resultados.

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Revisa el mapa curricular (plan de estudios) de tu carrera. Incluye también las materias optativas.

- a. Determina la proporción de materias en las que puede aplicarse la estadística.
- b. Supón que, a partir del siguiente semestre, las materias que no se han cursado (incluyendo optativas) fueran asignadas aleatoriamente hasta terminar la carrera. Calcula la probabilidad de que la proporción de materias con aplicación de estadística sea mayor a 80%.

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿Qué es una distribución muestral?
- 2. ¿Cuál es la distribución muestral de la media?
- 3. Menciona las características de la distribución t de Student.
- 4. ¿Cuándo se debe utilizar la distribución t de Student?
- 5. ¿Cuál es la distribución muestral de una proporción?
- 6. Menciona las características de la distribución χ₂.
- 7. Menciona las características de la distribución F.
- 8. ¿Cuándo se utiliza una distribución F?
- 9. ¿Cuáles son los valores de la media y de la desviación estándar de una distribución normal estandarizada?
- 10. ¿Qué garantiza el teorema de límite central?

EXAMEN PARCIAL

(de autoevaluación)

I. Elige la respuesta correcta a las siguientes preguntas.

 Son características de la distribución normal, EXCEP 	TO (que	la:
--	------	-----	-----

a) Distribución es acampanada	O b) Distribución es asintótica
O c) Suma del área bajo la curva es	O d) Distribución tiene sesgo
uno	positivo

2. Función de Excel que calcula la probabilidad de una distribución normal estandarizada.

a) DISTR.NORM.ESTAND(z)	O b) DISTR.NORM.ESTAND.INV(z)
O c) DISTR.NORM.ESTAND	Od) DISTR.NORM.ESTAND.INV
(probabilidad)	(probabilidad)

3. Distribución muestral de la media que se utiliza cuando se desconoce la varianza poblacional.

a) t de Student	O b) Normal
O c) Bernoulli	O d) F

4. Distribución muestral de una media o proporción que se emplea en muestras				
mayores a 30 elementos.				
O a) t de Student	O b) Normal			
Ο c) χ ²	Od) F			
5. Distribución muestral utilizada para com	ıparar dos varianzas.			
oa) t de Student	O b) Normal			
O c) χ^2	Od) F			
6. Valor esperado de la varianza muestral	S ² .			
O a) Desviación estándar poblacional	O b) Media poblacional			
O c) Grados de libertad	O d) Varianza poblacional			
7. Distribución muestral cuyo valor espera uno.Q a) t de Student	O b) Normal			
O c) F	\bigcirc d) χ^2			
8. Son características de la distribución F,	EXCEPTO que:			
O a) Compara dos varianzas	O b) Toma valores positivos			
O c) Es sesgada a la izquierda	O d) Depende de los grados de libertad			
Teorema del límite central que garantiza promedio muestral se distribuye.	a que, conforme aumenta la muestra, el			
O a) Exponencial	O b) χ^2			
O c) F	O d) Normal			
10. La distribución muestral de una proporc	ión tiene como valor esperado:			
a) La proporción poblacional	O b) La varianza poblacional			
O c) Los grados de libertad	O d) El promedio poblacional			

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado encontrarás las respuestas al examen por unidad.

Unidad 2
I. Solución
1. d
2. a
3. a
4. b
5. d
6. d
7. d
8. c
9. d
10. a

UNIDAD 3

Estimación de parámetros

OBJETIVO PARTICULAR

Al terminar la unidad, el alumno aprenderá los métodos de estimación de parámetros y su interpretación.

TEMARIO DETALLADO

(10 horas)

3. Estimación de parámetros

- 3.1. Estimaciones por punto y estimaciones por intervalo
- 3.2. Error de muestreo y errores que no son de muestreo
- 3.3. Propiedades de los estimadores
- 3.4. Estimación de una media con muestras grandes
- 3.5. Estimación de una media con muestras pequeñas
- 3.6. Estimación de una proporción
- 3.7. Otros intervalos de confianza

ACTIVIDAD DIAGNÓSTICA LO QUE SÉ

En la siguiente tabla, se muestran las calificaciones de un grupo de 20 alumnos obtenidas en un examen parcial de Estadística II.

Alumno	Calificación
1	5
2	7
3	4
4	8
5	7
6	6
7	3
8	4
9	9
10	3
11	9
12	10
13	7
14	3
15	6
16	8
17	4
18	10
19	10
20	8

- 1. Con la información de la tabla anterior, calcula el promedio y la desviación estándar de las calificaciones registradas, así como la proporción de calificaciones mayores al promedio.
- Obtén una muestra aleatoria de ocho estudiantes y calcula el promedio, la desviación estándar y la proporción de calificaciones mayores al promedio muestral.
- 3. Compara tus resultados e interpreta.

ACTIVIDADES DE APRENDIZAJE

Unidad 3, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet <u>MindManager</u>.

1. Unidad 3, actividad 1. Adjuntar archivo. Una empresa embotelladora de agua desea realizar una estimación del número de litros que consumen al mes las personas que compran agua embotellada. La tabla siguiente muestra las respuestas de una encuesta aplicada por la empresa a 80 clientes. ¿Cuál es la cantidad de litros que consumen al día? La empresa multiplicó la respuesta del cliente por 30 días para determinar el número de litros al mes.

	Consumo	Consumo		Consumo		Consumo		
	mensual de		mensual de		mensual de	nensual de		
Cliente	agua (L)	Cliente	agua (L)	Cliente	agua (L)	Cliente	agua (L)	
1	120	21	120	41	90	61	60	
2	60	22	30	42	30	62	150	
3	150	23	60	43	120	63	90	
4	150	24	90	44	60	64	150	
5	90	25	90	45	90	65	90	
6	30	26	120	46	90	66	90	
7	120	27	120	47	90	67	150	
8	150	28	90	48	120	68	90	
9	90	29	60	49	30	69	30	
10	150	30	60	50	30	70	120	
11	150	31	120	51	120	71	30	
12	120	32	90	52	150	72	60	
13	90	33	60	53	30	73	120	
14	30	34	60	54	60	74	30	
15	60	35	150	55	60	75	30	
16	120	36	60	56	120	76	30	
17	120	37	30	57	30	77	30	
18	60	38	30	58	60	78	90	
19	30	39	150	59	30	79	30	
20	150	40	120	60	90	80	30	

- a. Estima un intervalo de confianza para el promedio mensual de litros de agua consumidos por los clientes. Utiliza un nivel de confianza del 99%.
- b. Estima un intervalo de confianza para la proporción de clientes que consumen menos de 85 litros al mes. Emplea un nivel de confianza del 95%.
- c. Selecciona una muestra de 25 clientes y estima un intervalo de confianza para el promedio mensual de litros de agua consumidos por los clientes. Aplica un nivel de confianza del 90%.
- d. Con la misma muestra, calcula un intervalo de confianza para la proporción de clientes que consumen menos de 85 litros al mes. Utiliza un nivel de confianza del 95%.
- e. Si se considera la información de los 80 clientes como la población y como la muestra la seleccionada en el inciso c, calcula el error de muestreo para los incisos b y d.
- f. Con el mismo supuesto del inciso anterior, calcula un intervalo de confianza para la desviación de la población.
- 2. Unidad 3, actividad 2. Adjuntar archivo. A continuación, se muestra el importe trimestral en millones de pesos de las operaciones realizadas en cajeros automáticos del mismo banco durante 50 trimestres

Observación	Importe	Observación	Importe
1	164,165	26	377,227
2	174,871	27	375,748
3	207,942	28	423,968
4	220,535	29	382,557
5	189,983	30	394,386
6	195,926	31	402,068
7	203,272	32	453,958
8	227,243	33	415,208
9	191,674	34	431,830
10	193,024	35	443,691
11	184,909	36	498,038

12	207,607	37	463,496
13	256,106	38	483,054
14	267,407	39	482,578
15	274,207	40	545,725
16	321,413	41	502,647
17	297,818	42	509,963
18	303,748	43	511,485
19	309,497	44	589,238
20	353,212	45	527,880
21	332,232	46	560,008
22	339,033	47	553,998
23	345,630	48	637,364
24	396,841	49	588,772
25	370,820	50	611,318

Fuente: Banxico.org.mx. Sistemas de pago de bajo valor. Operaciones en cajeros automáticos. Periodo ene-mar 2002 a jul.-sep. 2014. Fecha de consulta 27 de abril de 2015.

Si se considera esta información una muestra del importe de las operaciones trimestrales realizadas en cajeros automáticos del mismo banco:

- a. Realiza una estimación por intervalo de la desviación estándar con un nivel de confianza de 95%.
- b. Asumiendo que la desviación estándar poblacional es el punto medio del intervalo obtenido en el inciso anterior, realiza una estimación por intervalo de la media con un nivel de confianza de 95%.
- c. Si la media poblacional es el punto medio del intervalo calculado en el inciso b y la desviación estándar es el punto medio del intervalo calculado en el inciso a, calcula la probabilidad de que en una muestra de 32 observaciones el importe promedio de transacciones en cajeros automáticos del mismo banco exceda los 450 mil millones de pesos.
- d. Obtén una muestra aleatoria de 32 elementos y calcula el promedio muestral. ¿El resultado es consistente con el del inciso anterior?

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Adjuntar archivo.

Escribe un resumen de un artículo de alguna publicación relacionada con administración, contaduría o informática, donde se haya aplicado la metodología de estimación puntual y estimación por intervalo. En tu resumen describe también la problemática, identifica e interpreta las estimaciones y describe los resultados.

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿Qué es un estimador?
- 2. ¿Cuáles son las propiedades deseables de un estimador?
- 3. ¿Cuál es el error de muestreo?
- 4. ¿Qué es una estimación?
- 5. ¿Qué es una estimación puntual?
- 6. ¿Qué es una estimación por intervalo?
- 7. ¿Cómo se construye un intervalo para la media poblacional con muestras grandes?
- 8. ¿Cómo se construye un intervalo para la media poblacional con muestras pequeñas?
- 9. ¿Cómo se construye un intervalo para la proporción poblacional?
- 10. ¿Cómo se construye un intervalo para la desviación poblacional?

EXAMEN PARCIAL

(de autoevaluación)

I. Elige la respuesta correcta a las siguientes preguntas.

La distribución t de Student se emplea con muestras:	para estimar un intervalo para la media
O a) Pequeñas y σ desconocida	O b) Grandes y σ desconocida
O c) Grandes y σ conocida	O d) Grandes y σ conocida
2. μ, σ y P son ejemplos de:	
O a) Parámetros	O b) Estimadores
O c) Medidas muestrales	O d) Estimación puntual
3. Estimador $\hat{\theta}$ es la regla que indica cón fórmula.	
O a) La distribución	O b) El parámetro
O c) El estimador	O d) La estimación
4. Insesgado y mínima variabilidad son pro	opiedades del:
O a) parámetro	O b) estimador
O c) error	O d) intervalo de confianza
5. Existe un único valor como aproximació	n al valor real de un parámetro.
a) Estimación por intervalo	O b) Medida de dispersión
O c) Medida de tendencia central	O d) Estimación puntual

6. Diferencia entre μ y \overline{x}

- a) No hay diferencia ya que ambas son promedios muestrales
 b) μ es el promedio poblacional y x̄ es el promedio muestral
 c) μ es una estimación y x̄ es un estimador
 d) No hay diferencia porque ambas se utilizan para construir un intervalo de confianza
- 7. La estimación _____ es el rango de posibles resultados en los que se encuentra el valor real del parámetro.

O a) Por intervalos	O b) Por intervalos
O c) Puntual	O d) Del parámetro

8. La estimación _____ es el rango de posibles resultados en los que se encuentra el valor real del parámetro.

O a)
$$IC = \theta \pm \delta\sigma_{\widehat{\theta}}$$
O b) $IC = \widehat{\theta} \pm Z\sigma_{\widehat{\theta}}$ O c) $IC = \widehat{\theta} \pm \delta\sigma_{\widehat{\theta}}$ O d) $IC = \theta \pm Z\sigma_{\widehat{\theta}}$

9. $\overline{x} = \frac{\sum x_i}{n}$ es:

a) El promedio poblacional	O b) La estimación del promedio
O c) El parámetro muestral	O d) La regla para estimar el promedio poblacional con los
	datos de una muestra

10. $IC = p \pm t \sqrt{\frac{pq}{n}}$ es la fórmula para calcular un intervalo de confianza para una

O a)	Proporción	con	una	muestra	b) Probabilidad con una muestra
	menor a 30				menor a 30
O c)	Proporción	con	una	muestra	O d) Media con una muestra menor
	mayor a 30				a 30

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado encontrarás las respuestas al examen por unidad.

Unidad 3
I. Solución
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

UNIDAD 4

Pruebas de hipótesis

OBJETIVO PARTICULAR

Al terminar la unidad, el alumno conocerá las pruebas de hipótesis y su aplicación.

TEMARIO DETALLADO

(10 horas)

4. Pruebas de hipótesis

- 4.1. Planteamiento de las hipótesis
- 4.2. Errores tipo I y tipo II
- 4.3. Pruebas de uno y de dos extremos, y regiones de aceptación y de rechazo
- 4.4. Pruebas de hipótesis para una media poblacional
- 4.5. Tres métodos para realizar pruebas de hipótesis
 - 4.5.1. El método del intervalo
 - 4.5.2. El método estadístico de prueba
 - 4.5.3. El método del valor de la P
- 4.6. Prueba de hipótesis sobre una proporción poblacional
- 4.7. Pruebas de hipótesis sobre la diferencia entre dos medias
- 4.8. Pruebas de hipótesis sobre la diferencia entre dos proporciones
- 4.9. Prueba para la diferencia entre dos varianzas

ACTIVIDAD DIAGNÓSTICA LO QUE SÉ

Una radiodifusora cuenta con información de la población mayor de doce años que radica en la delegación Miguel Hidalgo, con las variables de nivel de escolaridad, tiempo y horario que dedica a escuchar la radio. Al gerente de la radiodifusora le interesa conocer si su programación es aceptada por esta población.

Con base en los datos anteriores:

- a. ¿Cuál es el parámetro de interés?
- b. ¿A cuántas personas sería conveniente entrevistar?
- c. Formula tres preguntas que permitan obtener información de interés para el gerente.

ACTIVIDADES DE APRENDIZAJE

Unidad 4, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet <u>MindManager</u>

1. Unidad 4, actividad 1. Adjuntar archivo. En cierta región se sabe que una familia con hijos entre 6 y 15 años destina en promedio \$4,000 al mes en actividades deportivas, culturales o académicas después del horario escolar. También se sabe que solamente el 15% de estas familias con hijos entre estas edades, realizan este tipo de actividades.

Una escuela que ofrece sus servicios en los niveles de primaria y secundaria desea brindar actividades extracurriculares. Para determinar el costo de las actividades, elige una muestra aleatoria de 40 familias de cada nivel educativo con la intención de conocer el gasto mensual que destinan a estas actividades fuera de la escuela. La información se muestra en la siguiente tabla.

Gasto mensual en actividades extracurriculares

	actividades							
			riculares					
Familia		naria	Secundaria					
1	\$	8,077	\$	9,930				
2	\$	6,359	\$	8,143				
3	\$	6,977	\$	9,945				
4	\$	8,605	\$	7,096				
5	\$	6,877	\$	3,679				
6	\$	4,115	\$	9,175				
7	\$	4,238	\$	7,580				
8	\$	10,370	\$	8,079				
9	\$	5,177	\$	6,447				
10	\$	9,846	\$	9,838				
11	\$	5,980	\$	9,452				
12	\$	8,865	\$	6,159				
13	\$	6,138	\$	6,652				
14	\$	7,917	\$	8,953				
15	\$	7,373	\$	6,949				
16	\$	10,009	\$	7,902				
17	\$	3,650	\$	7,503				
18	\$	8,174	\$	8,614				
19	\$	9,653	\$	4,073				
20	\$	5,411	\$	4,156				
21	\$	6,607	\$	4,469				
22	\$	4,020	\$	5,812				
23	\$	7,282	\$	7,993				
24	\$	7,663	\$	8,896				
25	\$	7,116	\$	5,516				
26	\$	10,395	\$	5,145				
27	\$	5,122	\$	7,686				
28	\$	9,032	\$	7,865				
29	\$	6,584	\$	5,595				
30	\$	8,433	\$	6,839				
31	\$	3,587	\$	6,060				
32	\$	5,261	\$	6,059				
33	\$	6,060	\$	10,187				
34	\$	8,501	\$	3,580				
35	\$	5,979	\$	9,599				
36	\$	6,465	\$	3,771				
37	\$	8,826	\$	8,102				
38	\$	8,214	\$	9,249				
39	\$	10,360	\$	3,780				
40	\$	9,791	\$	4,315				

Con un nivel de significancia del 5% responde lo siguiente:

- a. ¿Las familias de la escuela están en posibilidad de destinar mayor gasto en actividades extracurriculares respecto al promedio de la región?
- b. ¿La proporción de familias que gasta al mes una cantidad superior al promedio de la región supera el 60%?
- c. ¿El gasto promedio mensual en este tipo de actividades de las familias de nivel primaria es mayor al de las familias de secundaria?
- d. ¿La proporción de familias que gasta al mes más de \$4,000 es mayor en la primaria que en la secundaria?
- e. ¿Existe diferencia en la variación del monto mensual pagado en las actividades extracurriculares entre los niveles educativos?
- 2. Unidad 4, actividad 2. Adjuntar archivo. La empresa A&B es resultado de la fusión de las empresas A y B. Recientemente, se percibe un clima laboral que no ayuda a los logros de las metas. Para detectar los aspectos que no favorecen al buen clima laboral, se aplicó una encuesta a 120 empleados elegidos aleatoriamente provenientes de la empresa A, y a 150 de la empresa B. Los principales resultados se muestran en la siguiente tabla.

Empresa	n	salarial sal	Desviación salarial	Porcentaje en desacuerdo con nuevas políticas
А	120	\$7,200	\$2,800	54%
В	150	\$13,100	\$1,900	73%

De acuerdo con los resultados anteriores y considerando un nivel de significancia de 5%, responde lo siguiente:

- a. ¿Existe diferencia en la variación salarial entre los empleados provenientes de A respecto a los de B?
- b. Con la información de la tabla anterior, ¿se apoya que los empleados de mayores ingresos no están de acuerdo con las nuevas políticas? Justifica tu respuesta.

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Revisa tu historial académico de preparatoria y calcula el promedio obtenido en las materias de matemáticas en los tres años. Asimismo, obtén el promedio de las materias de matemáticas que has cursado hasta este momento en tu carrera. Con una significancia de 5%, ¿afirmarías que tu desempeño en materias de matemáticas ha mejorado de la preparatoria a la licenciatura?

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿Qué es una prueba de hipótesis?
- 2. ¿Qué es una hipótesis alternativa?
- 3. ¿Cuándo se presenta el error tipo I?
- 4. ¿Cuándo se presenta el error tipo II?
- 5. ¿Qué es una prueba de un extremo?
- 6. ¿Qué es una prueba de dos colas?
- 7. ¿Qué es el nivel de significancia?
- 8. ¿Qué es un estadístico de prueba?
- 9. ¿Qué es el valor crítico?
- 10. ¿Qué es una zona de rechazo?

EXAMEN PARCIAL

(de autoevaluación)

- I. Elige la respuesta correcta a las siguientes preguntas.
- 1. Una hipótesis estadística es un enunciado que se hace sobre el comportamiento de un:
- a) Parámetro poblacional o de una 0 b) Estimador poblacional o de una variable aleatoria su variable aleatoria У distribución de probabilidad distribución de probabilidad Oc) Indicador muestral o de una Od) Parámetro muestral y de una variable aleatoria variable aleatoria ٧ su ٧ su distribución de probabilidad. distribución de probabilidad
- 2. La hipótesis nula es un enunciado que se hace referente al comportamiento del valor de un parámetro:
- a) Muestral para ser probada a través de la información de la muestra
 b) Poblacional para ser probada a través de la información de la muestra
 c) Muestral para ser probada a través de la información de la población
 d) Poblacional para ser probada a través de la información de la población

3.	La	hipótesis	alternativa	es	un	enunciado	que	se	hace	para	contrastar	е
comportamiento del valor de un:												

- a) Parámetro poblacional definido en la hipótesis nula, dependiendo de los resultados obtenidos de los valores de la muestra
 b) Parámetro poblacional definido en la hipótesis nula, dependiendo de los valores de la población
 c) Parámetro muestral definido en la hipótesis nula, dependiendo de los resultados obtenidos de los valores de la hipótesis nula, dependiendo de los resultados obtenidos de los valores de la muestra
- 4. Nivel de significancia es la probabilidad de no aceptar la hipótesis nula cuando es:
- **O** a) Verdadera; utiliza para Ob) Verdadera; se utiliza para se determinar el valor crítico, toma determinar el valor crítico, toma valores entre 0 y 1 valores entre 0 y 1 para O d) Falsa; se utiliza para determinar Oc) Verdadera: utiliza determinar el valor crítico, el valor crítico, toma valores entre toma valores entre -1 y 1 0 y 1

5. El valor crítico es un:

a) Parámetro poblacional) b) Cálculo para determinar el para determinar el punto que divide a la parámetro poblacional que divide a la región en la cual se rechaza la región en la cual se rechaza la hipótesis nula y la zona en la que no hipótesis nula y la zona en la que se rechaza no se rechaza Od) Cálculo para determinar el Oc) Cálculo para determinar parámetro muestral que divide a la punto que divide a la región en la región en la cual se rechaza la cual se rechaza la hipótesis nula y hipótesis nula y la zona en la que no la zona en la que no se rechaza se rechaza

6.	Un estadístico de prueba es una regla expresada con una fórmula que involuci	ra
	los valores:	

O a) De la muestra	O b) De la población
O c) Del parámetro	O d) Del estimador

7. La región de rechazo son los valores de la prueba donde:

O a) No se rechaza la hipótesis nula	O b) No se rechaza la hipótesis alternativa
O c) Se rechaza la hipótesis nula	O d) Se rechaza la hipótesis alternativa

8. El punto p (p-value) es la probabilidad de observar un valor:

O a) Muestral tan extremo o más que el	O b) Poblacional tan extremo o más
valor observado si la hipótesis nula	que el valor observado si la
es verdadera.	hipótesis nula es verdadera
O c) Muestral tan extremo o más que el	Od) Muestral tan extremo o más
valor observado si la hipótesis	que el valor observado si la
alternativa es verdadera	hipótesis nula es falsa

9. El error tipo I consiste en:

O a) Rechazar una hipótesis nula	O b) No rechazar una hipótesis nula
cuando es falsa	cuando es cierta
O c) Rechazar una hipótesis alternativa	Od) Rechazar una hipótesis nula
cuando es cierta	cuando es cierta

10. El error tipo II es:

O a) Rechazar una hipótesis nula	O b) Aceptar una hipótesis
cuando es falsa	alternativa cuando es falsa
O c) Aceptar una hipótesis nula cuando	Od) Aceptar una hipótesis nula
es verdadera	cuando es falsa

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado encontrarás las respuestas al examen por unidad.

Unidad 4		
I. Solución		
1. a		
2. b		
3. a		
4. a		
5. d		
6. a		
7. c		
8. a		
9. d		
10. d		

UNIDAD 5

Pruebas de hipótesis con la distribución ji cuadrada

OBJETIVO PARTICULAR

Al terminar la unidad, el alumno relacionará los conceptos de prueba de hipótesis con la distribución ji cuadrada.

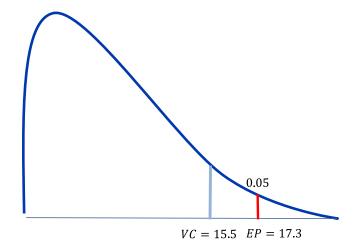
TEMARIO DETALLADO

(10 horas)

5. Pruebas de hipótesis con la distribución ji cuadrada

- 5.1. La distribución ji cuadrada, χ²
- 5.2. Pruebas de hipótesis para la varianza de una población
- 5.3. Prueba para la diferencia entre *n* proporciones
- 5.4. Pruebas de bondad de ajuste a distribuciones teóricas
- 5.5. Pruebas sobre la independencia entre dos variables
- 5.6. Pruebas de homogeneidad

ACTIVIDAD DIAGNÓSTICA LO QUE SÉ


1. Plantea la hipótesis para la siguiente situación.

Una institución ecológica quiere determinar si ha disminuido la proporción de aves muertas en la Ciudad de México con la política implementada del hoy no circula.

$$H_0 =$$

$$H_1 =$$

2. Concluye la prueba de hipótesis a partir del siguiente gráfico:

ACTIVIDADES DE APRENDIZAJE

Unidad 5, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet MindManager.

- 1. Unidad 5, actividad 1. Adjuntar archivo. Una empresa dedicada a la repartición de valores tiene como política que sus unidades no hagan esperar a sus clientes más de 10 minutos. El gerente de operación supone que existe una desviación estándar de cinco minutos. Para confirmarlo, elige una muestra de 15 camiones y obtiene una desviación de seis minutos. ¿Se puede afirmar con un nivel de confianza del 90% que el gerente está en lo correcto?
- 2. Unidad 5, actividad 2. Adjuntar archivo. A los comensales de un restaurante se les aplica al final de su visita una encuesta sobre la calidad de los alimentos: 70% los considera buenos; 20%, regular; y el resto, malo. Recientemente, se realizaron mejoras al menú y se tomó la opinión de 250 clientes; los conteos se muestran a continuación:

Malo	Regular	Bueno	Total
30	60	160	250

De acuerdo con la información anterior, ¿se apoya, con un nivel de confianza del 95%, que los cambios realizados por el restaurante modificaron la opinión del cliente hacia la calidad de los alimentos?

 Unidad 5, actividad 3. Adjuntar archivo. A continuación, se muestran las unidades económicas del país por tamaño y si han sido objeto de actos de corrupción.

Tamaño	Si	No	Total
Micro	125,779	3,482,285	3,608,064
Mediana	9,715	133,647	143,362
Grande	2,002	25,742	27,744
Pequeña	950	13,686	14,636
Total	138.446	3.655.360	3,793,806

Fuente: elaboración propia con información de la Encuesta Nacional de Victimización de Empresas 2014, INEGI.

De acuerdo con la información de la tabla, ¿se podría afirmar, con un nivel de confianza del 95%, que la ocurrencia de actos de corrupción en las unidades económicas es independiente de su tamaño?

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Encuesta al menos a 30 de tus compañeros del SUAYED que sean de tu generación. Pregunta sobre el tiempo que tardaron en retomar sus estudios de licenciatura y el número de materias reprobadas al semestre actual. Con la información recabada y un nivel de confianza del 99%, construye una tabla de contingencia y realiza una prueba de independencia. Comenta tus resultados.

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿Qué es una distribución χ^2 ?
- 2. ¿Cuáles son las características de una distribución χ^2 ?
- 3. ¿Cuál es el estadístico de prueba empleado para contrastar hipótesis relacionadas con la varianza poblacional?
- 4. ¿Cuántos grados de libertad tiene el estadístico de prueba utilizado para probar bondad de ajuste de una distribución Poisson asumiendo la hipótesis nula como cierta?
- 5. ¿Cuántos grados de libertad tiene el estadístico de prueba empleado para probar bondad de ajuste de una distribución normal asumiendo la hipótesis nula como cierta?
- 6. ¿Cuántos grados de libertad tiene el estadístico de prueba aplicado para probar bondad de ajuste de una distribución binomial asumiendo la hipótesis nula como cierta?
- 7. ¿Qué es una tabla de contingencia cruzada?
- 8. ¿Cuántos grados de libertad tiene el estadístico de prueba empleado para probar independencia asumiendo la hipótesis nula cierta?
- 9. ¿Cuántos grados de libertad tiene el estadístico de prueba empleado para probar homogeneidad asumiendo la hipótesis nula cierta?
- 10. ¿Qué significa que las muestras son homogéneas?

EXAMEN PARCIAL

(de autoevaluación)

I. Elige la respuesta correcta a las siguientes preguntas.

- 1. Son características de una distribución χ^2
- a) Definida para valores positivos, la suma del área bajo χ² es uno, es sesgada a la izquierda, su forma no depende de los grados de libertad
- O c) Definida para valores positivos, la suma bajo el área es uno, es sesgada a la izquierda, su forma depende de los grados de libertad
- b) Definida para valores menores a uno, la suma del área bajo la curva es uno, es sesgada a la izquierda, su forma depende de los grados de libertad
- O d) Definida para valores positivos, la suma del área bajo la curva es uno, es sesgada a la derecha y su forma depende de los grados de libertad
- 2. Al contrastar una hipótesis nula con una alternativa que involucra a la varianza poblacional, se emplea el estadístico de prueba:

O a)
$$\chi^2 = \frac{(n-1)\sigma^2}{\sigma^2}$$
 O b) $\chi^2 = \frac{(n-1)s^2}{s^2}$ O c) $\chi^2 = \frac{(n-1)\sigma^2}{s^2}$ O d) $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

3. Si la hipótesis nula es cierta, el estadístico $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$ tiene una distribución χ^2 con _____ grados de libertad.

○ a) N – 1	O b) n – 1
\bigcirc c) $\frac{s^2}{\sigma^2}$	O d) (n – 1)s ²

4. La función de Excel PRUEBA.CHI.INV (probabilidad, grados_de_libertad) calcula:

O a) El estadístico de prueba	O b) Los grados de libertad de la distribución
O c) El punto crítico	O d) el nivel de confianza

5. Resultado de aplicar la función PRUEBA.CHI.INV (0.1,14)

a) 23.68	O b) 21.7
O c) 21.064	O d) 21.05

 Se utiliza para clasificar observaciones de una muestra de acuerdo con dos o más características cualitativas.

\bigcirc a) Prueba χ^2	\bigcirc b) Distribución χ^2
O c) Prueba de independencia	O d) Tabla cruzada

7. La distribución χ^2 se emplea en los siguientes casos, EXCEPTO:

O a) Probar hipótesis acerca de la			O b) Realizar pruebas de bondad de			
varianza poblacional		ajus	ste de distri	bucion	es	
O c) Probar indeper	idencia de	O d)	Realizar	una	prueba	de
variables		diferencia de varianzas				

- 8. En una prueba de homogeneidad de muestras, el valor del estadístico de prueba resultó menor que el punto crítico. ¿Qué sé concluye de lo anterior?
 - a) Existe evidencia estadística para apoyar la hipótesis alternativa apoyar que las muestras no son homogéneas
 b) Existe evidencia estadística para apoyar que las muestras no son homogéneas
 c) No existe evidencia estadística para apoyar la hipótesis nula apoyar la hipótesis nula
- 9. En una prueba de bondad de ajuste para una distribución normal, se construyeron 10 categorías. A partir de la hipótesis nula, ¿cuántos grados de libertad tiene el estadístico de prueba $\chi^2 = \sum_{i=1}^k \frac{(o_i e_i)^2}{e_i}$?

Q a) 9	o b) 7
O c) 8	O d) 10

- 10. En una prueba de independencia, el valor del estadístico de prueba se encuentra en zona de rechazo. De lo anterior se concluye que existe evidencia estadística para apoyar que:
 - a) las variables están asociadas
 b) las muestras son homogéneas
 c) la muestra proviene de una distribución Poisson
 d) las varianzas de las variables son distintas

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado verificas las respuestas al examen por unidad.

Unidad 5				
I. Sol	ución			
1.	d			
2.	d			
3.	b			
4.	С			
5.	С			
6.	d			
7.	d			
8.	С			
9.	b			
10.	а			

UNIDAD 6

Análisis de regresión lineal simple

OBJETIVO PARTICULAR

El alumno conocerá el método de regresión lineal simple, así como su aplicación e interpretación.

TEMARIO DETALLADO

(10 horas)

6. Análisis de regresión lineal simple

- 6.1. Ecuación y recta de regresión
- 6.2. El método de mínimos cuadrados
- 6.3. Determinación de la ecuación de regresión
- 6.4. El modelo de regresión y sus supuestos
- 6.5. Inferencias estadísticas sobre la pendiente de la recta de regresión
- 6.6. Análisis de correlación

ACTIVIDAD DIAGNÓSTICA LO QUE SE

A continuación, se muestra el monto del ingreso y gasto que registran en promedio 10 familias al mes.

Familia	Ingreso	Gasto
1	14,283	5,717
2	14,424	6,097
3	10,464	8,947
4	6,449	9,185
5	14,619	9,246
6	12,527	9,644
7	11,004	10,083
8	7,833	10,545
9	14,055	12,156
10	13,524	14,718

Con la información anterior:

- a. Elabora una tabla de frecuencias e histograma para el ingreso y para el gasto.
- b. Realiza un análisis descriptivo del ingreso y gasto de la muestra.
- c. Elabora una gráfica de dispersión con las variables ingreso y gasto (en el eje vertical, se encontrará el gasto).
- d. De acuerdo con el gráfico, ¿puede explicarse el gasto conforme al ingreso?

ACTIVIDADES DE APRENDIZAJE

Unidad 6, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet <u>MindManager</u>.

1. Unidad 6, actividad 1. Adjuntar archivo. Una empresa turística desea saber el monto que dedican las familias en actividades recreativas de acuerdo con su nivel de ingreso; para investigarlo, encuestó a 20 familias. A continuación, se muestra el ingreso y monto que destinan estas familias a las actividades recreativas.

2. Ingreso y monto destinado a actividades recreativas de veinte familias

Familia	Ingreso Monto en actividades		Familia	Ingreso	Monto en
		recreativas			actividades
					recreativas
1	14,953	3,760	11	10,662	3,463
2	16,925	3,433	12	10,618	2,524
3	9,003	2,234	13	9,598	4,389
4	17,699	1,966	14	10,799	1,174
5	16,181	2,335	15	18,786	1,300
6	16,450	3,462	16	11,476	4,663
7	12,445	1,135	17	16,442	1,022
8	9,655	2,894	18	9,002	4,814
9	13,661	3,322	19	13,220	4,967
10	10,731	3,827	20	13,165	3,948

Con la información anterior:

- a. Determina la relación que existe entre las variables al aplicar el método de regresión simple.
- c. Determina si el modelo de regresión es significativo, y constrúyelo.
- d. Interpreta los resultados.

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Adjunta tu archivo.

Resume un artículo de alguna publicación relacionada con contaduría, administración o informática, en donde se haya aplicado la metodología del análisis de regresión simple. En tu resumen, describe la problemática, identifica e interpreta el modelo ajustado y describe los resultados. Cita la referencia de consulta.

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿Qué es el modelo de regresión lineal?
- 2. ¿Cómo se divide el modelo de regresión lineal?
- 3. ¿Qué es el coeficiente de determinación?
- 4. ¿Qué es el coeficiente de correlación?
- 5. ¿Para qué se utiliza el método de mínimos cuadrados?
- 6. ¿Cómo se interpreta la pendiente en el modelo de regresión lineal simple?
- 7. ¿Cuál es la ecuación de la regresión lineal simple?
- 8. ¿Cuál es la hipótesis nula que se plantea al realizar inferencia de la pendiente de la recta de regresión lineal simple?
- 9. ¿Cómo se interpreta un coeficiente de correlación que tiene valor cero?
- 10. ¿Cómo se interpreta un coeficiente de correlación lineal con valor absoluto de 1?

EXAMEN PARCIAL

(de autoevaluación)

I. Elige la respuesta correcta a las siguientes preguntas.

1.	1. La regresión explica la relación lineal que puede existir entre do						
	variables a través de un modelo ma	temático.					
	a) Logística	O b) Lineal simple					
	c) Lineal múltiple	O d) binaria					
2.	$oldsymbol{eta}_0$ es la notación de la:						
	O a) Pendiente de la recta ajustada	O b) La hipótesis nula					
	O c) Intersección al eje X	O d) Intersección al eje Y					
3	. eta_1 es la notación de la:						
	O a) Pendiente de la recta ajustada	a O b) La hipótesis nula					
	O c) Intersección al eje X	O d) intersección al eje Y					

4. Elige la interpretación correcta de la siguiente ecuación.

Calificación = 4 + 1.02 horas de estudio

O a) La calificación aumenta un punto	O b) La calificación aumenta cuatro				
por cada cuatro horas de estudio puntos por cada hora de estudio					
O c) La calificación disminuye un punto por cada hora de estudio	O d) Por cada hora de estudio adicional la calificación aumenta un punto				

5. Si se ajusta un modelo de regresión lineal y se obtiene $R^2 = 0.82$, significa que el modelo:

O a) Explica un 82% de la	O b) Explica un 8.2% de la					
variabilidad	variabilidad					
O c) Tiene una correlación lineal del	O d) Tiene una correlación del 8.2%					
82% de variabilidad	de variabilidad					

6. Si el coeficiente de correlación de dos variables tiene un valor de 0.45, significa que existe una correlación:

O a) Lineal positiva moderada	O b) Positiva moderada
O c) Positiva moderada	O d) Lineal positiva débil

7. En la ecuación

Accidentes laborales = 21.2 – 3.1 cursos de prevención

 β_1 es:

O a) Negativa	O b) Lineal
O c) Positiva	O d) Positiva moderada

8. Si un modelo de regresión lineal tiene un valor crítico de F de 6.2358775E – 15, significa que el modelo:

O a) No es significativo	O b) No es lineal
O c) Es significativo	O d) Se explica un 6%.

9. Si $\beta_1 = -5.7$ y $\beta_0 = 3.5$, la ecuación de regresión lineal simple es:

\bigcirc a) Y = -5.7 + 3.5 X	\bigcirc b) Y = 3.5 – 5.7 X
\bigcirc c) Y = 5.7 + 3.5 X	\bigcirc d) Y = 3.5 – (–5.7 X)

10. Si X representa el ahorro y Y el presupuesto, ¿qué frase describe acertadamente la estimación del presupuesto?

$$\hat{Y} = \beta_0 + \beta_1 \cdot X$$
; con $\beta_0 = 2, \beta_1 = 3$ y $x_i = 2$

a) El presupuesto estimado es de \$2 cuando ahorras \$8
 b) El ahorro estimado es de \$8 cuando el presupuesto es de \$10
 c) El ahorro estimado es de \$2 cuando el presupuesto es de \$8 cuando ahorras \$2

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado encontraras las respuestas al examen de esta unidad.

Unidad 6					
I. Solución					
1.	С				
2.	d				
3.	а				
4.	С				
5.	b				
6.	C				
7.	а				
8.	b				
9.	С				
10.	d				

UNIDAD 7

Análisis de series de tiempo

OBJETIVO PARTICULAR

Al terminar la unidad, el alumno conocerá los métodos para el análisis de series de tiempo, así como su aplicación e interpretación.

TEMARIO DETALLADO

(8 horas)

7. Análisis de series de tiempo

- 7.1. Los cuatro componentes de una serie de tiempo
- 7.2. Análisis gráfico de la tendencia
- 7.3. Tendencia secular
- 7.4. Variaciones estacionales
- 7.5. Variaciones cíclicas
- 7.6. Fluctuaciones irregulares
- 7.7. Modelos autorregresivos de promedios móviles

ACTIVIDAD DIAGNÓSTICA LO QUE SE

A continuación, se muestra la audiencia mensual promedio de hogares (en miles) que siguen un noticiario transmitido por televisión a las 22:00 horas, durante el periodo de julio de 2013 a marzo de 2015.

	Audiencia
Mes	televisiva del
ivies	noticiario de
	las 22:00 PM
jul-13	1960
ago-13	2794
sep-13	3046
oct-13	3750
nov-13	3736
dic-13	4386
ene-14	4022
feb-14	3289
mar-14	2838
abr-14	2065
may-14	2255
jun-14	2978
jul-14	3000
ago-14	3320
sep-14	1077
oct-14	3031
nov-14	2670
dic-14	2910
ene-15	2589
feb-15	2501
mar-15	2644

Con la información anterior:

- a. Define las variables dependiente e independiente.
- b. Construye una gráfica de líneas.
- c. Describe el comportamiento de la gráfica.
- d. Calcula el promedio de la audiencia.

ACTIVIDADES DE APRENDIZAJE

Unidad 7, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet MindManager.

1. Unidad 7, actividad 1. *Adjuntar archivo.* A continuación, se muestra la evolución del precio de la gasolina en México, de 1938 a 2015.

Año	Precio Gasolina \$								
1938	0.00018	1955	0.00055	1971	0.00055	1986	0.18	2001	5.61
1939	0.00018	1956	0.00055	1972	0.00055	1987	0.573	2002	5.86
1940	0.00023	1957	0.00055	1973	0.00055	1988	0.573	2003	6.04
1941	0.00023	1958	0.00055	1974	0.00052	1989	0.618	2004	6.21
1942	0.00023	1959	0.00055	1975	0.00052	1990	1	2005	6.47
1943	0.00025	1960	0.00055	1976	0.003	1991	1.25	2006	6.74
1944	0.00027	1961	0.00055	1977	0.003	1992	1.22	2007	7.01
1945	0.00027	1962	0.00055	1978	0.004	1993	1.31	2008	7.72
1946	0.0003	1963	0.00055	1979	0.004	1994	1.35	2009	7.8
1948	0.0003	1964	0.00055	1980	0.007	1995	2.24	2010	8.76
1949	0.0003	1965	0.00055	1981	0.01	1996	2.87	2011	9.73
1950	0.0004	1966	0.00055	1982	0.03	1997	3.39	2012	10.81
1951	0.0004	1967	0.00055	1983	0.041	1998	4.25	2013	12.13
1952	0.0004	1968	0.00055	1984	0.054	1999	4.79	2014	13.31
1953	0.0004	1969	0.00055	1985	0.105	2000	5.27	2015	13.57
1954	0.0004	1970	0.00055						

www.mexicomaxico.org/Voto/GasolMexUSA.htm

Con la información anterior, realiza lo siguiente:

- a. Grafica la serie.
- b. Realiza un pronóstico utilizando el método de regresión.
- c. Realiza un pronóstico utilizando el método de promedio móvil.
- d. Interpreta los resultados.

2. Unidad 7, actividad 2. *Adjuntar archivo*. La siguiente información muestra el precio del dólar en México registrado en el periodo enero 2000-marzo 2015.

				Precio	del dólar			
Mes	2000	2001	2002	2003	2004	2005	2006	2007
Enero	9.63	9.68	9.15	10.90	11.07	11.19	10.56	11.02
Febrero	9.37	9.69	9.10	11.03	11.08	11.10	10.55	11.16
Marzo	9.28	9.58	9.00	10.78	11.14	11.19	10.90	11.00
Abril	9.41	9.35	9.41	10.27	11.44	11.10	11.05	10.93
Мауо	9.51	9.27	9.64	10.33	11.44	10.90	11.36	10.74
Junio	9.82	9.07	9.97	10.47	11.55	10.76	11.15	10.77
Julio	9.37	9.17	9.87	10.61	11.43	10.61	10.99	10.99
Agosto	9.20	9.20	9.98	10.73	11.41	10.82	10.93	11.04
Septiembre	9.45	9.52	10.22	11.13	11.40	10.78	11.01	10.93
Octubre	9.57	9.27	10.21	11.03	11.54	10.80	10.77	10.66
Noviembre	9.42	9.23	10.16	11.36	11.25	10.57	10.98	10.90
Diciembre	9.61	9.20	10.40	11.32	11.16	10.64	10.80	10.92
				Precio	del dólar			
Mes	2008	2009	2010	2011	2012	2013	2014	2015
Enero	10.83	14.20	13.07	12.14	13.06	12.67	13.31	0.00
Febrero	10.69	15.06	12.83	12.10	12.86	12.86	13.22	14.99
Marzo	10.65	14.03	12.36	11.90	12.78	12.36	13.05	15.12
Abril	10.49	13.72	12.22	11.51	12.96	12.21	0.00	
Мауо	10.33	13.07	12.95	11.57	14.16	12.95	12.88	
Junio	10.30	13.14	12.95	11.72	13.32	13.01	13.01	
Julio	10.03	13.27	12.76	11.73	13.27	12.76	13.25	
Agosto	10.25	13.38	13.26	12.31	13.38	13.38	13.05	
Septiembre	10.92	13.52	12.54	13.71	12.82	13.07	13.51	
Octubre	12.96	13.22	12.34	13.20	13.08	13.05	13.41	
Noviembre	13.23	13.00	12.46	13.79	12.99	13.06	13.79	
Diciembre	13.96	13.11	12.35	13.96	13.04	13.11	14.70	

http://www.banamex.com/economia_finanzas/es/divisas_metales/dolar_interbancario.htm

Con la información anterior, realiza lo siguiente:

- a. Grafica la serie.
- b. Realiza un pronóstico utilizando el método de regresión.
- c. Realiza un pronóstico utilizando el método de promedio móvil.
- d. Interpreta los resultados.

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Descarga una serie de al menos 36 datos y realiza un pronóstico de cinco observaciones aplicando lo aprendido en la unidad. Como sugerencia, puedes utilizar alguna serie de los sitios inegi.org.mx o banxico.org.mx. Comenta tus resultados.

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿Qué es una serie de tiempo?
- 2. ¿Qué es un pronóstico?
- 3. ¿Qué es el componente de tendencia?
- 4. ¿Qué es el componente de estacionalidad?
- 5. ¿Qué es el componente cíclico?
- 6. ¿Qué es el componente de irregularidad?
- 7. ¿Cuántos enfoques hay para el tratamiento de una serie de tiempo?
- 8. ¿Qué es una serie estacionaria?
- 9. ¿Cuál es el método de promedio móvil?
- 10. ¿Qué es una serie desestacionalizada?

EXAMEN PARCIAL

(de autoevaluación)

I. Elige la respuesta correcta a las siguientes preguntas.

1. Una serie de tiempo puede entenderse como el registro de:

a) Valores de una variable de	O b) Un valor a través del tiempo
forma constante	
O c) Valores de una variable a través del tiempo	Od) Un valor de manera anual

2. El aumento o reducción constante de una serie de tiempo se refiere al componente llamado:

a) Ciclo	O b) Estacional
O c) Irregular	O d) Tendencia

3. Patrón que muestra una secuencia de puntos por debajo y por arriba de una línea de tendencia que tiene duración de más de un año.

a) Ciclo	O b) Estacional
O c) Irregular	O d) Tendencia

4. Condición de una serie de tiempo en la que el valor de una variable es completamente impredecible.

a) Ciclo	O b) Estacional
O c) Irregular	O d) Tendencia

5. Patrones de cambio que tienden a repetirse en una serie de tiempo durante un año.

o a) Ciclo	O b) Estacional
O c) Irregular	O d) Tendencia

6. Patrón en el cual los datos fluctúan alrededor de la media y de una desviación constante en el tiempo.

O a) Estacionalidad	O b) Tendencia
O c) Estacionaria	O d) Irregular

7. Método de pronóstico que sirve para visualizar la tendencia y medir la fluctuación estacional.

O a) Promedio móvil	O b) Regresión
O c) Promedio general	O d) Promedio ponderado

8. Método de pronóstico que sirve para visualizar la tendencia a través de una ecuación lineal.

O a) Promedio móvil	O b) Regresión
O c) Promedio general	O d) Promedio ponderado

9. Este parámetro indica el número de observaciones que deben considerarse en la obtención de una nueva serie que estima la tendencia.

O a) Promedio	O b) Pendiente
O c) Orden	O d) Ordenada al origen

10. Métodos utilizados en series estacionarias.

O a) De regresión	O b) De ciclicidad
O c) De promedio	O d) Autorregresivos

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado encontraras las respuestas al examen de esta unidad.

Unidad 7		
I. Solu	ción	
1.	С	
2.	d	
3.	а	
4.	С	
5.	b	
6.	С	
7.	а	
8.	b	
9.	С	
10.	d	

UNIDAD 8

Pruebas estadísticas no paramétricas

OBJETIVO PARTICULAR

Al terminar la unidad, el alumno identificará las pruebas no paramétricas más utilizadas.

TEMARIO DETALLADO

(8 horas)

8. Pruebas estadísticas no paramétricas

- 8.1. Diferencias entre los métodos estadísticos paramétricos y no paramétricos
- 8.2. La prueba de rachas para aleatoriedad
- 8.3. La prueba del signo
- 8.4. La prueba de signos y rangos de Wilcoxon

ACTIVIDAD DIAGNÓSTICA LO QUE SE

Relaciona las siguientes columnas de acuerdo con los tipos de variables cuantitativa y cualitativa.

1. Continuas	()	a)	Solamente se clasifican o se cuentan; no tienen un orden lógico; las categorías son excluyentes.
2. Cuantitativa	()	b)	Representan una cualidad o atributo; solamente son medibles.
3. Ordinal	()	c)	El cero significa ausencia total y no existen medidas negativas.
4. Discreta	()	d)	Toman cualquier valor dentro de un intervalo específico.
5. Escala de intervalo	()	e)	El cero es arbitrario y pueden existir medidas negativas; se pueden establecer distancias entre los datos.
6. Escala de razón	()	f)	Se expresan en forma numérica; pueden medirse, cuantificarse y ordenarse.
7. Nominal	()	g)	Toman ciertos valores generalmente enteros.
8. Cualitativa	()	h)	Existe cierto orden natural; sin embargo, no se puede hacer comparaciones cuantitativas entre las categorías, son excluventes.

ACTIVIDADES DE APRENDIZAJE

Unidad 8, actividad inicial. *Adjuntar archivo.* A partir del estudio de la bibliografía específica sugerida, elabora un mapa conceptual u <u>organizador gráfico</u> con los temas de la unidad. Puedes auxiliarte de algunos programas como Mindjet MindManager.

1. Unidad 8, actividad 1. Adjuntar archivo. En una organización, se cuenta con servicio de comedor. Para asignar un contrato de un año, se ponen a prueba a dos proveedores a partir de una muestra de 10 empleados que contestan un cuestionario donde califican del 1 al 10 la calidad del servicio, donde 1 significa muy malo y 10 excelente. En la siguiente tabla, se muestran las calificaciones que los empleados pusieron a cada proveedor.

	Prove	eedor
Empleado	1	2
1	8	10
2	6	8
3	5	5
4	8	10
5	8	7
6	5	8
7	10	8
8	5	9
9	8	9
10	9	8

Con un nivel de significancia de 0.05, se apoya que no existe diferencia entre los proveedores.

- a. Utiliza la prueba de signos.
- b. Utiliza la prueba de rangos de Wilcoxon. Compara los resultados.
- c. Realiza una prueba de diferencia de medias y compara los resultados.

2. Unidad 8, actividad 2. Adjuntar archivo. En una muestra, 15 alumnos se sometieron a un curso de nivelación de estadística durante el periodo intersemestral. A continuación, se muestran las calificaciones que obtuvieron en un examen de estadística antes y después del curso.

		Califi	cación
Alumno	Género	Antes	Después
1	Н	7	7
2	M	6	7
3	M	7	6
4	M	8	9
5	Н	9	9
6	Н	10	9
7	M	10	10
8	M	7	9
9	Н	6	6
10	M	5	7
11	M	5	4
12	M	7	9
13	Н	8	9
14	Н	6	7
15	M	7	7

Con un nivel de significancia de 0.05, se apoya que el nivel de desempeño de estadística es el mismo antes y después del curso.

- a. Utiliza la prueba de signos.
- b. Utiliza la prueba de rangos de Wilcoxon. Compara los resultados.
- c. Realiza una prueba de diferencia de medias y compara su resultado.
- d. Los resultados son válidos, es decir, la muestra es aleatoria.

ACTIVIDAD INTEGRADORA LO QUE APRENDÍ

Selecciona una muestra de 10 compañeros de tu grupo y pídeles su opinión sobre las materias de Estadística Descriptiva y Estadística Inferencial. Califica del 1 al 5 las opiniones de estas materias: 1 significa total desagrado; y 5, total agrado. Con base en los resultados y con una significancia de 0.01, ¿se apoya la hipótesis de que el gusto por estas materias es el mismo?, ¿qué aspectos crees que pudieran estar influyendo en el resultado de tu prueba?

CUESTIONARIO DE REFORZAMIENTO

Adjuntar archivo. Responde las siguientes preguntas.

- 1. ¿En qué consisten los métodos estadísticos paramétricos?
- 2. ¿En qué consisten los métodos estadísticos no paramétricos?
- 3. ¿Qué se desea probar en la prueba de rachas?
- 4. ¿Qué es una racha?
- 5. ¿Qué es el método no paramétrico de rachas?
- 6. ¿Qué hipótesis se desea probar en la prueba de signos?
- 7. ¿En qué consiste el método no paramétrico del signo?
- 8. ¿Qué se desea probar en la prueba de Wilcoxon?
- 9. ¿En qué consiste el método no paramétrico de Wilcoxon de los rangos con signo?
- 10. ¿Cuáles son las desventajas de los métodos no paramétricos?

EXAMEN PARCIAL

(de autoevaluación)

I. Elige la respuesta correcta a las siguientes preguntas.

 a) No requieren la suposición de que la población viene de una distribución 	O b) Las variables dependen de una distribución normal
O c) Los resultados se infieren a una	O d) Son métodos muy complicados que

2. NO es un método no paramétrico:

1. Es una ventaia de los métodos no paramétricos.

 a) La distribución χ² 	O b) De rachas
O c) De signo	O d) Wilcoxon

3. Secuencia de valores con una característica común precedida y seguida por valores que no presentan esa característica.

O a) Muestra	O b) Racha
O c) Media del número de rachas	O d) Desviación del número de rachas

4.	Esta prueba se utiliza para inferir si u	una muestra es aleatoria.				
	O a) Signos	O b) Rachas				
	O c) Wilcoxon	O d) Diferencia de medias				
5.	5. El estadístico T ⁺ se emplea en la prueba de:					
	O a) Rachas	O b) Signos				
	O c) Wilcoxon	Od) T				
6.	6. En esta prueba, se utiliza una distribución binomial.					
	O a) Rachas	O b) Wilcoxon				
	O c) Signos	O d) Prueba T				
7. En esta prueba es suficiente que alguno de los tamaños de muestra sea mayo a 20 para que el estadístico de prueba se aproxime a una distribución normal.						
	a) Normal	O t) Signos				
	O c) Wilcoxon	O d) Rachas				
8.	ido y magnitud de las desviaciones.					
	O a) Signos	O b) Normal				
	O c) Rachas	O d) Wilconxon				
9. En esta prueba se considera el sentido de las diferencias de medicio						
	O a) Signos	O b) Wilcoxon				
	O c) Rachas	O d) Medias				
10.	 Permiten inferir el comportamiento de una población sin necesidad de con su distribución. 					
	a) Métodos no paramétricos	O b) Métodos paramétricos				
	O c) Estimaciones	O d) Intervalos de confianza				

RESPUESTAS EXAMEN DE AUTOEVALUACIÓN

En este apartado encontraras las respuestas al examen de esta unidad.

Unidad 7		
I. Solu	ción	
1.	а	
2.	а	
3.	b	
4.	b	
5.	С	
6.	С	
7.	d	
8.	d	
9.	а	
10.	а	

Facultad de Contaduría y Administración Sistema Universidad Abierta y Educación a Distancia